Cardinality Comparison and a Basic Fact about Subsets of a Set

Basic Fact: if $A_1 \subseteq A$ and $\exists f : A \mapsto A_1$ that is 1-1 (but maybe not onto), then $\exists h: A \mapsto A_1$ with h being one-to-one and onto.

Proof: Set A_0 =A and define inductively A_{j+2} = $f(A_j)$. Note that A_0 $\supseteq A_1$ $\supseteq A_2$ $\supseteq A_3$... Since f is 1-1, it follows that f: A_j - A_{j+1} $\mapsto A_{j+2}$ - A_{j+3} is both one-to-one and onto: it is onto by definition.

Now define h as follows:

If $x \in A_j - A_{j+1}$, j even, then set h(x)=f(x).

If $x \in A_j - A_{j+1}$, j odd, then set h(x)=x.

If
$$x \in \bigcap_{j=1}^{\infty} A_j$$
, then $h(x)=x$.

Since $A = ((A_0 - A_1) \cup (A_1 - A_2) \cup \dots) \cup (\bigcap_{j=1}^{\infty} A_j)$, this defines h on all of A. It is straightforward to check that h is one-to-one and onto. \square

Corollary: If \exists f:A \mapsto B , one-to-one, and \exists g: B \mapsto A , one-to-one, then \exists k: A \mapsto B one-to-one and onto.

Proof: The composition gof: $A \mapsto g(B) \subset A$ is one-to-one since it is the composition of one-to-one maps. By the Basic Fact, there is an onto, one-to-one map $h: A \mapsto g(B)$. Then $k=g^{-1} \circ h$ is one-to-one and onto. \square

Now we define $\#A \leq \#B$ ("A has a not larger cardinality than B") to mean \exists f: $A \mapsto B$, f is one-to-one. This makes sense in that, by the Corollary, $\#A \leq \#B$ and $\#B \leq \#A$ implies that #A = #B (in the usual sense that $\exists h: A \mapsto B$, h one-to-one and onto). So cardinal numbers can be compared (Exercise: if $\#A \leq \#B$ and $\#B \leq \#C$ then $\#A \leq \#C$). (Exercise: Define $\#A \leq \#B$ and check logical properties).