Cardinality Comparison and a Basic Fact about Subsets of a Set

Basic Fact: if $\mathrm{A}_{1} \subseteq \mathrm{~A}$ and $\exists \mathrm{f}: \mathrm{A} \mapsto \mathrm{A}_{1}$ that is 1-1 (but maybe not onto), then $\exists \mathrm{h}: \mathrm{A} \mapsto \mathrm{A}_{1}$ with h being one-to-one and onto.

Proof: Set $A_{0}=A$ and define inductively $A_{j+2}=f\left(A_{j}\right)$. Note that $A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq A_{3} \ldots$ Since f is $1-1$, it follows that $f: A_{j}-A_{j+1} \mapsto A_{j+2}-A_{j+3}$ is both one-to-one and onto: it is onto by definition.

Now define h as follows:
If $x \in A_{j}-A_{j+1}, j$ even, then set $h(x)=f(x)$.
If $\mathrm{x} \in \mathrm{A}_{\mathrm{j}}-\mathrm{A}_{\mathrm{j}+1}, \mathrm{j}$ odd, then set $\mathrm{h}(\mathrm{x})=\mathrm{x}$.
If $x \in \bigcap_{j=1}^{\infty} A_{j}$, then $h(x)=x$.
Since $A=\left(\left(A_{0}-A_{1}\right) \cup\left(A_{1}-A_{2}\right) \cup \ldots\right) \cup\left(\bigcap_{j=1}^{\infty} A_{j}\right)$, this defines h on all of A. It is straightforward to check that h is one-to-one and onto.

Corollary: If $\exists \mathrm{f}: \mathrm{A} \mapsto \mathrm{B}$, one-to-one, and $\exists \mathrm{g}: \mathrm{B} \mapsto \mathrm{A}$, one-to-one, then $\exists \mathrm{k}: \mathrm{A} \mapsto \mathrm{B}$ one-to-one and onto.

Proof: The composition gof: $\mathrm{A} \longmapsto \mathrm{g}(\mathrm{B}) \subset \mathrm{A}$ is one-to-one since it is the composition of one-to-one maps. By the Basic Fact, there is an onto, one-to-one map $\mathrm{h}: \mathrm{A} \mapsto \mathrm{g}(\mathrm{B})$. Then $\mathrm{k}=\mathrm{g}^{-1} \mathrm{~h}$ is one-to-one and onto.

Now we define $\# \mathrm{~A} \leq \# \mathrm{~B}$ ("A has a not larger cardinality than B ") to mean
$\exists \mathrm{f}: \mathrm{A} \mapsto \mathrm{B}, \mathrm{f}$ is one-to-one. This makes sense in that, by the Corollary, $\# \mathrm{~A} \leq \# \mathrm{~B}$ and $\# \mathrm{~B} \leq \# \mathrm{~A}$ implies that $\# \mathrm{~A}=\# \mathrm{~B}$ (in the usual sense that $\exists \mathrm{h}: \mathrm{A} \mapsto \mathrm{B}$, h one-toone and onto). So cardinal numbers can be compared (Exercise: if $\# \mathrm{~A} \leq \# \mathrm{~B}$ and $\# \mathrm{~B} \leq \# \mathrm{C}$ then $\# \mathrm{~A} \leq \# \mathrm{C}$). (Exercise: Define $\# \mathrm{~A} \leq \# \mathrm{~B}$ and check logical properties).

